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Abstract— We develop methods to infer path or bottleneck
sharing among TCP flow classes based on flow level mea-
surements available from current traffic monitoring tools. Our
premise is that flows that temporally overlap on congested
resources will have correlated throughputs. We propose to use
factor analysis to explore the correlation structure of flow class
throughputs in order to hypothesize which flow classes might
share congested resources. The effectiveness of this “black box”
approach is studied using empirical data. We show that making
such inferences based on flow level statistics is viable in practice,
and can serve as an effective, novel tool for network design and
configuration decisions. Our work on inferring bottleneck sharing
differs significantly from previous work in that we consider flow
level instead of packet level statistics, and hence may potentially
influence research in that area. Possible applications of this
technique include network monitoring and root cause analysis
of poor performance.

I. INTRODUCTION

Recently, the study of Internet (IP) traffic at the flow level
has attracted much attention [1], [2], [3], since flow level
performance (such as the time required to transfer a file)
determines the quality of service perceived by end users. A
commonly accepted definition of an IP flow is a unidirectional
sequence of packets between a source and a destination
endpoint identified by common IP addresses, Transmission
Control Protocol (TCP) or User Datagram Protocol (UDP)
port numbers, IP protocol type, type of service fields in IP
headers, etc. An IP flow class is a collection, or aggregation,
of flows having a common attribute. For example, we will
refer to all flows sharing common source and destination IP
address prefixes as a flow class.

A significant portion of IP traffic consists of packets from
elastic flows generated by applications such as Web transfers,
file transfers (FTP), and e-mail [4]. Such flows are transported
via TCP which uses packet delay and loss as indicators of the
available bandwidth to adjust the data transmission window
at the sender. Consequently, the quality of service (delay)
perceived by such flows is determined by the variable rates
achieved by TCP’s congestion control algorithm over the
sojourn of the flow. In this work, we deal only with classes
of flows mediated through TCP. Hence, we will refer to TCP
flow classes as just flow classes.
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State-of-the-art networking equipment is capable of generat-
ing flow records. A record contains the source and destination
IP addresses, source and destination port numbers, start and
end times, and the size (in bytes and packets) of flows
traversing that network element. A given sequence of packets
sharing the same attributes may be partitioned into multiple
flows based on a flow timeout interval, which can range from
seconds to minutes. An end of connection indication in the
TCP header (TCP FIN) may also be used to determine the end
of a TCP flow. Examples of technologies capable of generating
flow records are NetFlow [5], Argus [6], and sFlow [7]. A
major problem in flow measurement is the lack of scalability:
at very high speed routers, the number of flows to be measured
might easily exceed millions per hour. Therefore, at high link
speeds, the flows [8] and/or the packets within a flow [9]
may be sampled by the network element when generating flow
records in order to keep up with the link speeds.

A. Motivation

Packet level characteristics of IP traffic are complex to
analyze due to their extreme variability over a wide range of
time scales [10]. Packet level IP traffic is also data intensive
to collect and store for subsequent analysis. Motivated by
the increasing availability of flow level measurements and
the development of methods for characterizing flow level
performance of elastic traffic [1], [2], [3], we consider analyz-
ing network flow measurements for network monitoring and
inference of network properties rather than studying packet
level details. Although current network management software
provides extensive flow measurement capabilities, tools to
analyze such data are quite limited. Such tools might be very
useful to network engineers.

One critical problem that has been identified by Inter-
net service providers (ISPs) and content providers (CPs) is
determining which flows might share paths or bottlenecks
in the Internet. This is usually difficult without access to
the complete routing information for the network. In most
cases, network managers have information only about their
network domain and the properties of the other domains are
unknown. By inferring which flows share paths or bottle-
necks using only local measurements and the attributes of
flows (e.g. source/destination IP addresses), service providers
might perform load balancing of traffic that share a common
bottleneck onto disjoint paths. For instance, upon inferring
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that two customers or customer bases are experiencing poor
Web performance due to a bottleneck link serving them, the
provider of the Web content might choose to replicate content
at a second location to reduce the load on the bottleneck link.
We will term our inference of path sharing based only on
measurements collected at one site and the attributes of flows
as a “black box” approach.

The primary question addressed in this paper is “how to
infer the source/destination pairs sharing paths or bottlenecks”
based on flow measurements made at a single network element
without access to routing information inside the network.
Inferences for path or bottleneck sharing from flow measure-
ments are based on the following premise: TCP flow classes
that temporally overlap long enough on the same path, or
bottleneck, will tend to have positively correlated throughputs.
We propose to use factor analysis to study the correlation
structure of flow class throughputs and to infer which flow
classes share paths or bottlenecks.

B. Related Work

Our work on inferring path or bottleneck sharing differs
significantly from the previous work in that we consider flow
level instead of packet level statistics. Furthermore, we rely on
passive flow measurements made at a networking element (e.g.
router, gateway, server) rather than using end-to-end probes,
as has been the focus of previous work. While many other
previous correlation based methods that infer path sharing are
limited to determining whether particular flow class pairs are
correlated, the method developed in this paper considers a set
of flow classes simultaneously.

The simplest approach to detecting shared paths is to use
a utility such as traceroute that tracks the route that a
packet follows from its source to its destination. Such utilities,
however, require the cooperation of routers in the network on
the path of the flow. Owners of the carrier networks are often
unwilling to provide information about their networks, and
hence the use of such utilities is not always viable. Savage,
Cardwell, and Anderson [11] describe an approximation for
detecting shared paths by looking at the destination IP ad-
dresses of flows. Their approximation is based on the fact that
flows destined to a particular host or network address generally
follow the same path, and hence visit the same bottleneck in
the network. This simple “locality” based approximation is
unlikely to address the need to differentiate between flows
that are not sharing paths but have the same destination.

Harfoush, Bestavros, and Byers [12] use packet-pair probing
for determining whether two flows originating from the same
source share a bottleneck. Their technique is based on correlat-
ing end-to-end packet loss measurements to identify flows that
share “similar network conditions”. The main disadvantage
of their technique, in addition to being dependent on packet
level probing, is the requirement of cooperating senders.
Rubenstein, Kurose, and Towsley [13] have developed an end-
to-end technique based on packet loss or delay observations
to infer whether two flows are experiencing congestion on
a common set of network resources. Their methodology is

based on the observation that losses or delays experienced by
two packets passing through the same bottleneck exhibit some
degree of positive correlation. A major shortcoming of this
approach is the huge computational cost to correlate packet
level measurements. Moreover, the technique assumes that the
flows share a common endpoint; i.e., either the sources or the
destinations of packets are co-located and collaborating, which
has limited applicability.

Katabi, Bazzi, and Yang [14] have developed iterative clus-
tering techniques that minimize entropy-based cost functions
to cluster flows that share a bottleneck into groups. Their
method is based on the observation that correct clustering
minimizes the entropy of inter-packet spacing within clusters
with an empirical distribution measured by an observer. The
main advantage of their method is that it does not require
sending probe traffic into the network or require cooperating
senders; i.e. it is passive. However, they also indicate that their
technique is robust only when the observer can monitor a large
fraction of the traffic from the bottleneck link, and hence is
not practical when the observer is an end-receiver.

C. Summary of Contributions and Outline

First, we summarize the contributions of this paper.
1) We propose a methodology for inferring path sharing

among classes of flows based on flow level measure-
ments. This method treats the “network” as a “black
box” and only uses data available at a measurement
point, e.g. ingress/egress, to support inference.

2) We validate and refine our methodology on actual flow
level records collected at an Internet border router show-
ing the viability of this approach. We experimentally
establish a criterion for filtering out flows based on their
sojourn in the system to provide better inferences.

3) Finally, we discuss possible applications of this tech-
nique which include network monitoring and root cause
analysis of poor performance.

The outline of the paper is as follows. In Section II, we
describe factor analysis that is used to study the throughput
correlations in TCP traffic sharing paths or bottlenecks. In
Section III, we show the effectiveness of this approach on
actual TCP flow records collected at the border router of The
University of Texas at Austin. Section IV concludes the paper.

II. METHODS

The collection of flows in the network is denoted by a set
F . The size, start time (time of arrival of the first packet in a
flow), end time (time of arrival of the last packet in a flow),
and duration of a flow will be denoted by vf , sf , ef , and
df = ef − sf , respectively. Each flow f ∈ F belongs to a
flow class c ∈ C. The function φ : F → C determines the
class of a particular flow. We let Fc(t) = {f ∈ F : φ(f) =
c and sf ≤ t < ef} denote the set of flows that belong to
class c and are active at time t.

The perceived throughput for a flow is given by rf =
vf/df

1, and the average throughput of a flow class c ∈ C
1For one-packet flows, the perceived throughput is not well-defined.
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at the measurement point can be expressed as

rc(t) =

{
1

|Fc(t)|
∑

f∈Fc(t)
rf , if |Fc(t)| > 0,

0, otherwise.

We will estimate correlations among flow class throughputs
by using temporal throughput observations at times when all
of the classes are active. The condition that requires all flow
classes to be active at a given time ensures that there is a
class throughput observation at that time for each class under
consideration2. For p flow classes, let the random vector R =
(Rc1 , Rc2 , . . . , Rcp

)T , whose joint pdf is given by fR, denote
the typical class throughputs seen by classes at a typical time.
Note that it is possible that Rci

= 0 for any i = 1, . . . , p;
i.e., no flow from class ci is active at a typical time. Next,
let E = {Rci

> 0,∀ci ∈ C}, and define a random vector of
throughputs conditioned on E , R∗ = (R∗

c1
, R∗

c2
, . . . , R∗

cp
)T ,

with a joint pdf fR|E . Denote the intervals over which all
flow classes are active over a measurement period T by O(T )
(see Fig. 1). We will assume for now that rci

(t) and rcj
(t)

are realizations of ergodic random processes of throughputs
of flow classes ci and cj , respectively. The conditional mean
and variance of throughput for flow class ci are defined as

µci
= E[R∗

ci
] = lim

T→∞
1

|O(T )|
∫

O(T )

rci
(t)dt, (1)

σ2
ci

= E[(R∗
ci
− µci

)2]

= lim
T→∞

1
|O(T )|

∫
O(T )

(rci
(t) − µci

)2dt, (2)

and the conditional correlation of throughputs of flow classes
ci and cj is defined using (1) and (2):

ρcicj
=

E[(R∗
ci
− µci

)(R∗
cj

− µcj
)]

σci
σcj

= lim
T→∞

1
|O(T )|σci

σcj

×
∫

O(T )

(rci
(t) − µci

)(rcj
(t) − µcj

)dt. (3)

A. Factor Analysis of the Conditional Correlation Matrix

For p flow classes, we express the random vector of
conditional class throughputs as R∗ = (R∗

c1
, R∗

c2
, . . . , R∗

cp
)T

with a mean vector µR∗ = (µc1 , µc2 , . . . , µcp
)T . The idea

underlying factor analysis is to consider a representation for
R∗ in terms of a random vector of m (m ≤ p) common factors
F = (F1, F2, . . . , Fm)T , and a random vector of unique
factors U = (Uc1 , Uc2 , . . . , Ucp

)T . We assume that R∗ can
be expressed as

R∗ − µR∗ = ΛF + U, (4)

2Note that having all flow classes active at a given time is a stringent
requirement. However, we choose to impose our stringent condition to
guarantee positive definiteness of the throughput correlation matrix that is
used in this section.
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Fig. 1. Temporal overlaps of flow classes.

where Λ denotes a deterministic p ×m loading matrix. The
following additional assumptions are usually made: E[F] = 0,
Cov(F) = E[FFT ] = I (orthogonal factors), E[U] = 0,
Cov(U) = E[UUT ] = Ψ = diag(ψ1, . . . , ψp) (all covari-
ances among class throughputs are accounted by the factors),
and Cov(U,F) = 0. Using (4), one can write

Cov(R∗) = E[(R∗ − µR∗)(R∗ − µR∗)T ] = ΛΛT + Ψ.

Alternatively, one can obtain a conditional correlation matrix
ρ using (3), and express it as

ρ = (ρcicj
) = ΛΛT + Ψ, (5)

where ρcici
= 1. For factor analysis, we will use the condi-

tional correlation matrix instead of the conditional covariance
matrix, because the magnitudes of flow class throughputs can
vary greatly and normalizing such measurements is preferable.

The elements of the loading matrix Λ, Λij , capture the
degree of correlation exhibited between a given factor and
variable. Estimates Λ̂ and Ψ̂ for Λ and Ψ can be determined
by using the principal component method as follows (see
[15] for more details). First, the (positive definite) conditional
correlation matrix in (5) is expressed as

ρ = e1ξ1ξ
T
1 + e2ξ2ξ

T
2 + . . .+ epξpξ

T
p ,

where (ei, ξi) are the eigenvalue-eigenvector pairs such that
e1 ≥ e2 ≥ . . . ≥ ep > 0. Λ and Ψ can be determined by
taking the largest m eigenvalues, and by approximating ρ as

ρ ≈ Λ̂Λ̂T + Ψ̂

= (
√
e1ξ1, . . . ,

√
emξm)

×(
√
e1ξ1, . . . ,

√
emξm)T

+




ψ̂1 0 · · · 0
0 ψ̂2 · · · 0
...

...
. . .

...
0 0 · · · ψ̂p


 , (6)

so that Λ̂2
i1 + Λ̂2

i2 + . . . + Λ̂2
im) + ψ̂i = h2

i + ψ̂i = 1,

where h2
i is called the communality, and ψ̂i is called the
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specific “variance”. The communality represents the portion
of the normalized variance of R∗

ci
that is accounted by the

m common factors, while ψ̂i reflects the portion of the
normalized variance due to a factor that is unique to R∗

ci
.

When using the principal component method to “factor” the
correlation matrix without any assumptions on the distribution
of variables, there are only ad hoc heuristics for determining
the sufficiency of the number of factors m in the model. In
exploratory studies, one common approach to determine m
is to use Kaiser’s rule [15]. Kaiser’s rule proposes selecting
factors whose normalized variances (given by ej) are greater
than 1. The intuition behind this rule is that a factor that
has a variance less than 1 contains less information than
a normalized original variable does. The number of factors
m used in the model needs to account for a “reasonable”
proportion of variance. The proportion of the total variance
due to the jth factor is given by ej/p, i.e., the jth eigenvalue
divided by the number of classes. If the proportion of total
variance captured by the common factors is “high”, then we
say that the factors have a strong explanatory power.

B. Interpretation of Factor Loadings

For our application, the factors represent shared sources
of variation in class throughputs which are most likely due
to shared congested resources. We examine the magnitude of
factor loadings across a row (corresponding to flow classes)
of Λ and mark the one(s) with the largest magnitude(s).
The columns that are marked indicate the factors that are
contributing the most to the variations in the throughput for
that class. We identify the flow classes that share a factor as
classes likely to share a bottleneck.

Note that the loading matrix is determined only up to an
orthogonal rotation matrix Γ. If Λ∗ = ΛΓ, then

ρ = Λ∗Λ∗T + Ψ = ΛΓΓT ΛT + Ψ = ΛΛT + Ψ.

Throughout this paper, we rotate the loading matrix to obtain a
better description of the factors by using a common method in
factor analysis called varimax rotation [15]. Varimax rotation
attempts to find a rotation matrix Γ such that the squares of the
loadings on each factor are as spread out as possible. Hence,
the interpretation of loadings is easier with Λ∗.

III. ANALYSIS OF TCP FLOW RECORDS

A. Dataset

We used flow records collected at the border router of
The University of Texas at Austin on November 6, 2002,
between 12:58 PM and 2:07 PM CST. The dataset consisted
of 5,173,385 TCP flow records out of a total of 5,866,602
flow records. The records contained both the incoming and
outgoing traffic from UT Austin. The IP addresses belonging
to UT Austin were made anonymous to protect privacy.

B. Preprocessing

Flow throughput is not defined for one-packet flows, be-
cause the time between the first and the last packet is zero.
More importantly, flows with short durations may not have an

opportunity to “learn” the congestion state of the network. In
addition, the throughput of a flow that lasts a very long time
may not reveal the variations in the network’s congestion state
during the flow’s sojourn. Hence, we filter out all flow records
whose durations are shorter than one threshold or longer than
another threshold in order to capture the correlations among
flow class throughputs. We will experimentally establish that
the mean duration of the flows under consideration can serve
as the lower threshold for omitting flow records in order to
avoid the “noise” introduced by short flows into flow class
throughputs.

Next, we apply our methodology to two example cases to
infer path or bottleneck sharing based on flow records. These
examples are used to assess the effectiveness of our “black
box” approach, and thus, are chosen so that we have some
idea about possible path sharing among considered classes
(for example, by using the traceroute utility). We use
the nslookup and whois utilities to associate IP addresses
with ISPs and CPs. In the first case, we analyze a set of TCP
flow classes that originate from three different ISPs in the
United Kingdom, and identify which classes originate from
the same ISP. In the second case, we identify Web traffic either
originating from the same CP or sharing a bottleneck when
traversing the Internet.

1) Case 1: We defined five flow classes with source IP
addresses belonging to three different ISPs in the United
Kingdom: One class for BBC Internet Services, two classes
for British Telecom, and two classes for PIPEX. There is
reasonable certainty that flow classes that belong to an ISP
share infrastructure. We chose to analyze intercontinental
traffic, because the flow classes were likely to experience
congestion on relatively slow intercontinental links, although
perhaps not the same ones. As a validation for the factor
analysis results to be considered next, we used traceroute
to find the route that packets followed from UT Austin to
each of these classes’ destinations and assumed that the
traffic from these ISPs to UT Austin traversed the same set
of networking infrastructure reported by traceroute. We
inspected traceroute results to conclude that these ISPs
did not share the same intercontinental links.

2) Case 2: We selected five different CP’s Web traffic from
the flow records: MSN, HotMail, CNN, Yahoo!, and Google.
We assumed that Web traffic belonging to these CPs had
potentially experienced congestion due to high demand for
content. Again, we used traceroute to find the route that
packets followed from UT Austin to each of these destinations
and assumed that the traffic from these CPs to UT Austin
traversed the same set of networking infrastructure reported
by traceroute. Web addresses containing MSN and Hot-
Mail were traced to the Microsoft Corporation, Redmond,
Washington. Web addresses containing CNN were traced to
Atlanta, Georgia. A fraction of Web traffic from Yahoo! and
Google appeared to visit a router in Santa Clara, California.
We selected the source addresses belonging to Yahoo! and
Google that appeared to traverse common infrastructure in
Santa Clara. We accordingly defined five flow classes: MSN,
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TABLE I

FACTOR ANALYSIS RESULTS: FACTOR LOADINGS, COMMUNALITIES, AND

PERCENTAGE OF VARIANCE CAPTURED BY THE FACTORS ARE SHOWN.

CLASS 1: BBC, CLASS 2: BRITISH TELECOM 1, CLASS 3: BRITISH

TELECOM 2, CLASS 4: PIPEX 1, CLASS 5: PIPEX 2.

- Factor 1 Factor 2 Factor 3 Communality

Class 1 -0.049 0.035 0.976 0.955

Class 2 0.186 0.839 0.009 0.738

Class 3 -0.305 0.772 0.021 0.690

Class 4 0.821 0.103 -0.327 0.792

Class 5 0.883 -0.157 0.166 0.832
% Var 0.317 0.267 0.217 0.802

TABLE II

FACTOR ANALYSIS RESULTS: FACTOR LOADINGS, COMMUNALITIES, AND

PERCENTAGE OF VARIANCE CAPTURED BY THE FACTORS ARE SHOWN.

CLASS 1: MSN, CLASS 2: HOTMAIL, CLASS 3: CNN, CLASS 4: YAHOO!

(SANTA CLARA), CLASS 5: GOOGLE (SANTA CLARA).

- Factor 1 Factor 2 Factor 3 Communality

Class 1 -0.420 0.666 -0.358 0.749

Class 2 -0.244 -0.880 -0.091 0.843

Class 3 0.062 0.044 -0.917 0.846

Class 4 0.821 0.068 0.054 0.682

Class 5 0.687 -0.003 -0.470 0.694
% Var 0.277 0.245 0.240 0.763

HotMail, CNN, Yahoo! (Santa Clara), and Google (Santa
Clara).

C. Validation of Methodology

We assume that over 1-hour periods, class throughputs
can be modelled as stationary processes. Furthermore, we
assume that the packets from a given TCP flow follow the
same route3. Such assumptions, although idealized, are not
completely unrealistic for our 1-hour long flow measurements.

Recall that in Section III-B, we have explained the need
for filtering out TCP flow records to obtain better inferences
on path sharing. For the first case described above, we
filtered out all flow records whose durations were less than
75 seconds (approximately, the mean duration of flows under
consideration) or greater than 150 seconds. We constructed
the sample conditional correlation matrix (to estimate (5)) by
discretizing the measurement period into 1 second intervals
for our two cases. We assumed that the throughput of a
flow at a discretized interval was equal to its “continuous-
time” throughput if the flow was active anytime during that
interval. We used Kaiser’s rule [15] described in Section II-
A to determine the number of factors. We performed factor
analysis on the matrix by using (6) to obtain Λ̂ and Ψ̂. In
each case, varimax rotation was applied to the determined
loading matrix. The results of factor analysis with three factors

3This assumption is supported by the empirical measurements in [16].
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Fig. 2. Determination of the lower threshold for filtering flow records in
Case 1. The mean duration of flows under consideration was 70.4 seconds.
Numbers of discretized overlaps used in computing some of the temporal
correlations are also shown.

on the throughput correlation matrix are given in Table I.
For the second case, we filtered out all flow records whose
durations were less than 19 seconds (approximately, the mean
duration of flows under consideration) or greater than 150
seconds. The results of factor analysis with three factors
(determined by Kaiser’s rule) on the throughput correlation
matrix are given in Table II. For each case, the accuracy
of the proportion of total variance captured by the common
factors was determined by using confidence intervals. Since
the distribution of data was unknown, we resorted to the
bootstrap method [17] to compute 95% bias-corrected and
accelerated (BCa) confidence intervals for the proportions of
total variance captured by the common factors and reported in
Tables I and II. The computed intervals were [0.794, 0.809]
and [0.741, 0.781], respectively. Therefore, we concluded that
three factors, which accounted for more than 70% of the
total variance in data, could sufficiently model variations in
five class throughputs, and the loadings that were marked
successfully identify the flow classes that share infrastructure
in both cases. The inferences for path sharing are consistent
with those obtained by using traceroute.

Note, however, that if we filter out too many records,
the number of samples available for statistical analysis will
decrease, reducing our ability to infer path sharing. In order
to assess the choice for the lower filtering threshold (approx-
imately, the mean duration of flows under consideration), we
introduce a “distance metric” which gives us a measure of
the ability of the factors to capture path sharing among flow
classes:

d :=
1

p×m

p∑
i=1

m∑
j=1

(Λ0
ij − |Λ̂ij |)2, (7)

where, based on traceroute results from Sections III-B.1
and III-B.2, we set Λ0

ij = 1 if the flow class ci shares the
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Fig. 3. Determination of the lower threshold for filtering flow records in
Case 2. The mean duration of flows under consideration was 17.5 seconds.
Numbers of discretized overlaps used in computing some of the temporal
correlations are also shown.

factor j, and set Λ0
ij = 0 otherwise, which corresponds to

ideal loadings. Figs. 2 and 3 show the distance metric given in
(7) versus the lower threshold for filtering out flow records in
the two cases we consider in this section. The plots illustrate
that the distance metric is low (corresponding to the ability
of the factors to capture path sharing) if flow records with
durations less than the sample mean are filtered out. Note that
as the filtering threshold is increased beyond the mean, the
ability of the factors used to infer path sharing decreases since
the number of samples used for statistical analysis decreases.
Figs. 2 and 3 also show the numbers of discretized overlaps
used in computing some of the temporal correlations.

The potential power of our technique in root cause analysis
may be illustrated by considering the results in Table II. For
example, suppose that the users of services from MSN and
HotMail at UT Austin were experiencing poor performance
(delay), and UT Austin’s network managers were capable of
verifying that utilization of the local network was low. Treating
the outside network as a “black box” (i.e., no knowledge about
the utilization levels of access links or routing information
of outside network), network managers could infer that poor
performance was not due to the access links connecting UT
Austin to the Internet, because the flow classes did not have
one common factor that would indicate a bottleneck shared
by all classes. The network managers could then hypothesize
that the cause for poor performance was either at the CP’s
server or a bottleneck link visited by both flow classes in the
Internet.

IV. CONCLUSION

Our proposed approach for inferring path sharing based on
flow records can serve as a tool for network monitoring and
root cause analysis of poor performance. The methodology
may also be used to assess an ISP’s routing diversity, hence

robustness, upon inferring that none of the flow classes share
a congested resource.

One drawback of our approach is that when the offered
loads are low, the amount of temporal overlaps among flow
classes will be low. Thus, to collect an adequate sample
for statistical analysis, records will need to be collected
over an extended period of time. Unfortunately, over longer
measurement periods, the traffic/network may change making
inferences based on flow records difficult. We are currently in
the process of developing more extensive validation scenarios,
statistical tests, and employing confidence intervals to assess
our proposed methods. We are also considering to apply factor
analysis on a correlation matrix whose elements are estimated
by using pairwise class throughput correlations in order to
mitigate the inadequate sample size problem that arises when
loads offered by flow classes are low.
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